Top

天问一号15日成功登陆火星 陕西科技助力航天事业发展

来源:华商网-华商报 时间:2021-05-16 06:56:53 编辑:唐港 作者: 版权声明

← 点击大图左右可翻页 →

  此次火星着陆,“陕西造”7500N变推力发动机成了这次火星探索任务最后阶段的“金牌刹车片”。

  短短9分钟内须将两万多公里时速降为零

  探测器要想成功着陆火星,需要在短短9分钟时间内,将两万多公里的时速降为零,其间需要经历气动减速、降落伞减速、动力减速、着陆缓冲等多个环节,任何一个环节失误都意味着登陆失败。

  经过一系列减速措施,“天问一号”来到距离火星表面约2公里处,以约100m/s的速度不断接近火星表面。这个速度相当于目前我国高铁的最高运行时速。由航天科技集团第六研究院研制的7500N变推力发动机就是最后动力减速环节的主要工具,成为了这次火星探索任务的“金牌刹车片”。

image.png

  “天问一号”采用的是由液体火箭发动机提供反推力的方式来实施最后的减速,此方法已在嫦娥三、四、五号探测器落月过程中连续三次成功实施,火星着陆巡视器7500N变推力发动机正是落月用变推力发动机的2.0版。

  为了满足火星探测器安装结构要求和减重需求,并提升发动机性能,研制团队首次在我国开展深空探测的航天器上将推进分系统发动机燃烧室从以往的低室压方案改进为中室压方案,从而保证了相同推力情况下,发动机体积更小、性能更高。加上不断创新和优化生产工艺,有效实现了推进分系统的轻质化需求。

  制造过程中,改进型7500N变推力发动机与以往7500N发动机的性能和推力一样,但重量和体积只有以前发动机的三分之一,结构也更加优化、紧凑。发动机的对接法兰框还首次采用3D打印技术,“一次打印成型”避免大余量去除原实心棒材或锻件引起的变形,也保证了发动机与总体对接的质量稳定性。

  解决30分钟超长通讯时延和“平稳送达”难题

  之所以要从1.0升级到2.0,是因为火星表面软着陆的难度升级了。

  首先,火星实在太远了。月球与地球的平均距离为38万千米,而火星与地球的距离在5000万至4亿千米左右,远远超过地月距离。在地球上,最多0.13秒能实现任意两点通讯,地月之间需要2.5秒,但当“天问一号”需要在火星着陆时,火星与地球的距离为3亿千米,完成一次通讯需要30分钟。也就是说,信号还没跑到地球,探测器已经“收工”了。对于身在遥远异乡的小家伙,这一段路得自己操心,每一次推力的变化必须非常迅速、精准,发动机需要很“听话”。

image.png

  会不会频繁猛踩刹车,是评判一个司机驾驶技术好坏的重要指标之一。同样,为了减少降落过程中对着陆巡视器的冲击,将“乘客”平稳送达,发动机采用了“长距离轻刹车”的技巧。在降落过程中,雷达等探测设备会像眼睛一样盯着火星地面,测量巡视器距离地面高度等参数,这些参数进入GNC系统,由这个睿智的“大脑”计算出对发动机的推力要求。发动机会按照预设的时序和实时的指令完成变推力调节,让着陆巡视器慢下来,最后以很低的速度稳稳落在火星表面。

  火星表面软着陆的另一个难点在于,月球表面近似真空,而火星表面有一层稀薄的大气。在降落过程中,着陆器与火星表面的大气会剧烈摩擦,为了防止被“烧糊”,着陆器上增加了一个防热大底,原本可以“伸出去”的发动机被“兜起来”了。有限的舱体空间限制着发动机的尺寸,“天问一号”探测器变推力发动机的高度比“嫦娥三号”探测器变推力发动机要缩小超60%,推力等主要性能指标却保持不变,“小个子”要爆发出“大能量”,这意味着发动机必须更结实。

  去一趟火星不容易,但“天问一号”能携带“乘客”的总重量却是有限的。科研人员从发动机的原理入手,按照任务的需求和特点,对系统参数和总装布局进行了优化,既保证了功能,又增加了一些新技术,应用了一些新材料,发动机没有“长肉”“增肌”,重量还减少了2/3,为其他“乘客”让了让“座”,进一步发扬了变推力发动机高性能、长寿命、高可靠的特点,一举解决了上述问题。

  航天六院

  78台发动机书写新奇迹

  总部位于陕西的航天科技集团六院研制交付的78台各型发动机,推举长征五号遥四运载火箭、助力天问一号探测器,在浩瀚宇宙中书写了一个又一个新奇迹。

image.png

  30台发动机

  助力长五遥四火箭

  要想成功飞向火星,搭载火星探测器的运载火箭必须达到第二宇宙速度,方能助力探测器脱离地球引力,踏上神秘的探火之旅。

  在长征五号遥四运载火箭上,配置了由航天科技集团六院研制生产的新一代绿色无污染的8台120吨级液氧煤油发动机、2台50吨级氢氧发动机、2台9吨级膨胀循环发动机及18台作为辅助动力的姿控发动机。这30台四型发动机,将我国运载火箭的近地轨道运载能力,从9吨提升至25吨,从而实现火箭的一飞冲天,为天问一号探测器向着火星的漫漫星途,提供了强劲可靠的动力保障。

  7500N变推力发动机起关键作用

  在天问一号探测器上,六院研制交付了着陆巡视器和环绕器的推进分系统,共计48台大大小小的发动机。它们分别为着陆器着陆过程悬停、避障及缓速下降过程提供了可靠动力,为环绕器系统提供轨道转移、制动捕获、轨道调整以及姿态控制所需的精准动力。

image.png

  当进入合适的着陆时机,天问一号在3000N发动机作用下,下降到距离火星100km的高度,实现环绕器和着陆器分离。

  为使着陆巡视器降低运行速度达到着陆要求,作为着陆巡视器主发动机的7500N变推力发动机接续发挥关键作用,为着陆巡视器动力减速、悬停避障和缓速下降等软着陆任务提供轨控推力。

  该型发动机是六院研制团队在借鉴探月任务中7500N变推力发动机工程经验基础上,根据火星探测任务全新设计制造的发动机。并且相较之前探月任务中同样推力的7500N发动机,为了满足火星探测器安装结构要求和减重需求,并提升发动机性能,研制团队首次在我国开展深空探测的航天器上将推进分系统发动机燃烧室从以往的低室压方案改进为中室压方案,从而保证了相同推力情况下,发动机体积更小、性能更高。

  与此同时,环绕器在3000N发动机作用下,高度开始抬升,回到环火轨道,对火星全球环绕探测,持续为火星表面探测和地球的通信担当中继卫星。

image.png

  在此过程中,两器推进分系统中的小姿控发动机,也起到了不可替代的作用,共同成就了探测器环火和着陆时精准的身姿。

  让探测器能判断突发情况

  自己行动化解

  当天问一号到达火星时,探测器状态信号需要在宇宙空间里跑30分钟左右才能到达地球。

image.png

  因此,在推进分系统的前期设计中,六院研制团队使用了自主管理系统,让探测器自己判断突发情况自己采取行动化解,实现当判断动作时机到来时,天问一号能够自动执行任务。

  按照计划,近火捕获开始15分钟后发动机点火就会结束,但因为飞行的轨道设计,发动机点火开始后没多久,天问一号就飞到了火星背面的“星掩区”,火星的遮挡完全中断了探测器和地球之间的通信。为实现自主管理,确保任务顺利完成,六院研制团队开展头脑风暴,分别为环绕器和着陆巡视器设想了10余种自主管理方案和故障预案,比如发动机贮箱欠压、超压等。为推进分系统开展了发动机故障自主切换冗余设计、配置了制导导航和控制系统等保障。

  “泊车雷达”至关重要

  在“天问一号”火星探测器安全着陆火星过程中,航天科技集团五院西安分院研制的微波测距测速敏感器和测控数传分系统发挥着至关重要的作用。

image.png

  落火三分钟

  高精尖雷达精确探火

  当天问一号火星探测器中的着陆巡视器进入火星大气层的时候,安装在着陆巡视器进入舱上的专用雷达——微波测距测速敏感器开始加电工作。

  火星探测器由环绕器和着陆巡视器组成,在着陆火星前,环绕器将和着陆巡视器分离,环绕器继续环绕火星轨道飞行,而着陆巡视器则承担着在火星表面着陆的任务。火星探测器的着陆巡视器由进入舱和火星车“祝融”号构成,而微波测距测速敏感器犹如安装在进入舱上的“泊车雷达”,是负责提供着陆速度和距离信息的最重要的敏感器之一,对整个着陆过程进行安全把控。

  在着陆巡视器着陆的过程中,微波测距测速敏感器在距离地面6公里的时候开始工作,共工作3分钟。微波测距测速敏感器在进入火星大气层过程中加电,着陆火星过程中抛除防热大底后,微波测距测速敏感器转入“泊车雷达”工作模式,开始提供测距和测速信息,直至安全降落到火星表面。

  那么微波测距测速敏感器是怎样进行测距测速,确保火星平安着陆的呢?其主要依靠由四部雷达集成在一起的微波测距测速敏感器,指向四个不同方向,同时完成测距和测速的测量。较之前的月球探测任务在测距精度和测速动态范围上都有很大的提升。这四部雷达犹如“火眼金睛”,通过四部雷达的独立运行,可以为火星探测器提供最原始的、最真实的速度和距离信息,然后由火星探测器对各个单机产品提供的原始数据进行融合,获取探测器的实时高度和速度信息。

  由于在距离火星表面6公里的时候,正处于伞系减速段,这个时候整个着陆巡视器处于相对的摇晃状态,而此时,微波测距测速敏感器特殊的指向布局设计可以保证在摇晃的状态下,至少有三个波束是处于有效的测距测速范围内工作。

image.png

  到距离火星表面1-2公里的时候,降落伞以及着陆巡视器的背罩就会被抛除,进入了动力减速段,也就是通过安装在着陆巡视器上的反推发动机开始工作,直到距离火星表面100米,着陆巡视器处于悬停状态的时候,微波测距测速敏感器进入了相对平稳的工作状态。着陆巡视器将结合光学成像以及微波测距测速敏感器的数据,通过平移来选择最佳的着陆位置。

  行百里者半九十,从悬停在距离火星表面100米到着陆于火星表面,这是整个火星探测器着陆的关键阶段,这中间将经历避障和缓速下降的过程,在反推发动机的作用下,着陆巡视器开始缓慢垂直下降。在距离火星表面2米左右的时候,反推发动机停止工作,着陆巡视器将按照预选的区域着陆火星表面。至此,圆满完成整个火星的着陆过程。

  “立体通信测控网”扣紧“落火”关键一环

  除了微波测距测速敏感器,西安分院还为天问一号火星探测器研制了测控数传分系统,在“地”与“火”之间跨越4亿公里,搭建了地面测控站与着陆巡视器、环绕器及“祝融”号火星车之间的“立体通信网”。

  火星与地球之间的距离最远时可以达到4亿公里,大约相当于月球与地球距离的1000倍。在遥远的深空,清晰的信号传输,无疑是一项巨大的挑战。而西安分院在距离地球4亿公里外搭建的“立体通信测控网”时刻保障天问一号火星探测器与地球通信畅通无阻。

  天问一号探测器与地球间的通信主要包含三方面数据:天问一号火星探测器的位置和速度信息、地面测控站向探测器发送的遥控指令以及探测器向地面传回的探测信息。

  当火星探测器进入着陆阶段时,地面测控站要想了解着陆过程中的位置及速度信息,就需要依靠进入舱、环绕器与地面测控站之间的双向“信息高速路”。西安分院为天问一号火星探测器研制的测控数传分系统包括了UHF频段收发信机和X频段深空应答机等关键设备,可以先实现进入舱与环绕器之间的通信测控,环绕器再将信号回传至地面测控站。地面测控站也同样通过这条“信息高速路”将遥控指令发送至进入舱,确保着陆过程万无一失。

  西安分院进入舱UHF频段收发信机负责人田嘉介绍:“这一阶段的数据是‘落火’过程中的关键遥测数据,便于地面判断落火过程中各分系统的工作状态。由于‘落火’比‘落月’相对地球的距离更加遥远,火星表面环境相对月球表面环境更加复杂,难度更大,因此火星探测器在进入大气层、下降、着陆过程中的遥测十分关键。”

  作为我国首个火星探测器“落火”过程的“立体通信测控网”,测控数传分系统助力着陆巡视器成功着陆。在随后的“祝融”号火星车探测巡视任务中,火星车还将与地面测控站建立多条通信链路,持续为后续的火星探测任务服务。

  着陆巡视器核心部件也是“陕西造”

  在此次任务中,航天科技集团九院771所承担了“天问一号”火星着陆巡视器系统管理单元、数据接口单元CPU模块的研制工作,配套产品均运行正常,为任务成功保驾护航。CPU模块分别安装于着陆巡视器系统管理单元和数据接口单元,是着陆巡视器的核心部件,承担着总线控制、热控管理、自主管理、遥控数据处理与分发、遥测数据采集发送,以及其他各模块的控制等系统管理任务。

image.png

  771所宇航计算机设计事业部火星探测项目设计团队为适应火星特殊任务需求,设计中采用了三项关键技术:处理器使用了771所中央处理单元SiP模块LSCCU01RH,实现了系统的集成化和小型化;设计的Flash程序存储区EDAC电路,实现了程序存储区的“纠一检二”功能,提高了系统的空间抗单粒子能力;设计的MRAM实时数据存储电路,实现了系统关键数据的实时存储,确保了系统在复位或切机后能够恢复到正常状态,提升了系统的安全性。

image.png

  计算机制造部火星探测工艺制造团队主要承担了771所宇航、运载等型号配套任务的工艺设计、生产制造、质量安全等任务,保障了771所配套“火星探测”产品制造的可靠性。

  此外,以科研生产部、质量技术部、物资部及质检部等部门为主要力量的科研生产管理团队,积极配合,多措并举,确保了任务完成。 本版稿件由华商报记者 马虎振 采写


来源:华商网-华商报

相关热词搜索: 天问一号 火星 发展

Top